### Soft ResiScope™ Advanced Electrical Measurements for Delicate Samples

Soft ResiScope represents a breakthrough in electrical measurement technology for Atomic Force Microscopy (AFM). This innovative module for the Nano-Observer II AFM offers true quantitative resistance and current measurements on soft and fragile conductive samples, combining the benefits of intermittent contact modes with the precision of ResiScope measurements.



### Key Features and Advantages

- Non-Destructive Measurements: Ideal for fragile and soft conductive samples, preserving both sample and tip integrity.
- Wide Measurement Range: Measures resistance from 10<sup>2</sup> to 10<sup>12</sup> ohms, maintaining the extensive capabilities of standard ResiScope.
- Friction-Free Operation: Prevents sample damage and tip wear, crucial for delicate materials.
- **Constant Force Measurements:** Ensures quantitative and reproducible electrical characterization.
- Intermittent Contact Principle: Optimizes electrical measurement while minimizing sample interaction.
- Versatile Compatibility: Works with various sample types, from organic materials to biological specimens.

#### Comparison with Traditional Methods

Soft ResiScope overcomes limitations of both contact and oscillating modes:

- Prevents surface damage common in contact mode
- Achieves quantitative measurements not possible with standard oscillating modes
- Provides consistent results across various sample types



-Standard ResiScope Contact Mode

PMMA sample, (soft sample)

## **Advanced Capabilities**

- **Quantitative Measurements:** Provides results comparable to standard contact mode ResiScope on conventional samples.
- High Lateral Resolution: Maintains detailed imaging capabilities while ensuring sample preservation.
- Simultaneous Data Acquisition: Captures topography and electrical properties in a single pass.

# Soft ResiScope Operation:



- 1. The tip approaches the sample surface
- 2. Brief, controlled contact is made with constant force
- 3. Precise resistance and current measurements are taken
- 4. The tip retracts and moves to the next point
- 5. This cycle repeats to create a comprehensive electrical property map

Scientifi

# **Application fields & Results**

In the 5 µm Soft ResiScope<sup>™</sup> scan of an ultrathin granular gold layer evaporated on a doped-Si substrate, the topography appears relatively standard and uniform. However, the Soft ResiScope resistance signal reveals distinct variations across the surface, indicating areas with differing electrical properties.







# Nanotubes 10x10µm scan



# P3HT (Organic PV cell) 3x3 µm scan

